4000-520-616
欢迎来到免疫在线!(蚂蚁淘生物旗下平台)  请登录 |  免费注册 |  询价篮
主营:主营:分子类,蛋白类,抗体类,生化类试剂
咨询热线电话
4000-520-616
当前位置: 首页 > 新闻动态 >
新闻详情
...rhodamines as scaffolds for high-contrast fluorogenic probes
来自 : 发布时间:2024-12-22
ActionsCite Favorites Display options Display options Format Carbofluoresceins and carborhodamines as scaffolds for high-contrast fluorogenic probes 1 Janelia Farm Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia, 20147, United States. Carbofluoresceins and carborhodamines as scaffolds for high-contrast fluorogenic probes 1 Janelia Farm Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia, 20147, United States. Fluorogenic molecules are important tools for advanced biochemical and biological experiments. The extant collection of fluorogenic probes is incomplete, however, leaving regions of the electromagnetic spectrum unutilized. Here, we synthesize green-excited fluorescent and fluorogenic analogues of the classic fluorescein and rhodamine 110 fluorophores by replacement of the xanthene oxygen with a quaternary carbon. These anthracenyl \"carbofluorescein\" and \"carborhodamine 110\" fluorophores exhibit excellent fluorescent properties and can be masked with enzyme- and photolabile groups to prepare high-contrast fluorogenic molecules useful for live cell imaging experiments and super-resolution microscopy. Our divergent approach to these red-shifted dye scaffolds will enable the preparation of numerous novel fluorogenic probes with high biological utility. (a) Chemical structures of xanthene dyes and carbon-containing isologues. (b) Existing synthetic strategy… (a) Chemical structures of xanthene dyes and carbon-containingisologues. (b) Existing synthetic strategy to carborhodamine dyes.(c) Divergent synthesis of carborhodamines through carbofluoresceinintermediates.Properties of fluorescent dyes. (a) Spectral properties of dyes. (b) Normalized absorbance at… dyes. (a) Spectral properties of dyes.(b) Normalized absorbance at λmax versus pH for fluorescein(1) and carbofluorescein (4). Error barsshow standard error (SE; n = 2). Determined values(±SE): compound 1, pKa = 6.35 ± 0.02, Hill coefficient = 0.93 ± 0.02; compound 4, pKa = 7.44 ± 0.01, Hillcoefficient = 1.33 ± 0.03. (c) Absorption at λmax versus dielectric constant for rhodamine 110 (2) andcarborhodamine 110 (5). Error bars show SE (n = 2).Confocal microscopy of live, unwashed HeLa cells incubated with esterase substrates 20 or… live, unwashed HeLa cells incubated withesterase substrates 20 or 26 and counterstainedwith Hoechst 33342; scale bars = 10 μm. (a) Compound 20, 1 h incubation. (b) Compound 26, 24 h incubation.PALM imaging of F-actin in fixed mouse embryonic fibroblasts. (a) Synthesis of caged… of F-actin in fixed mouse embryonic fibroblasts. (a)Synthesis of caged carborhodamine 110–phalloidin conjugate 32. Reagents and conditions: (a) TFA/CH2Cl2, rt, 98%. (b) TSTU, DIEA, DMF, 74%. (c) i. H2N-PEG8-CO2H, DIEA, DMF; ii. TSTU, DIEA, DMF, then phalloidin-NH2, 69%, two steps. (b, c) PALM images for labeling with CRh110–PEG8–phallodin conjugate 32. (d, e) Labeling with mEos2–actin. (f, g) Labelingwith AF647–phalloidin. Images are rendered as a heat map oflocalization probability/nm2 with scale in lower right.For clarity, PALM images were plotted at a minimum localization precisionof 22 nm (b, d, and f) and 11 nm (c, e, and g). Scale bars (lowerleft): 5 μm (b, d, and f) or 1 μm (c, e, and g). Zheng H, et al. Chem Commun (Camb). 2013 Jan 18;49(5):429-47. doi: 10.1039/c2cc35997a. Chem Commun (Camb). 2013. PMID: 23164947 Zhang X, et al. Chemistry. 2021 Feb 19;27(11):3688-3693. doi: 10.1002/chem.202005296. Epub 2021 Jan 26. Chemistry. 2021. PMID: 33330995 Zhou X, et al. Angew Chem Int Ed Engl. 2017 Apr 3;56(15):4197-4200. doi: 10.1002/anie.201612628. Epub 2017 Mar 20. Angew Chem Int Ed Engl. 2017. PMID: 28319304 Free PMC article. Yakugaku Zasshi. 2019;139(2):277-283. doi: 10.1248/yakushi.18-00174-3. Yakugaku Zasshi. 2019. PMID: 30713240 Lavis LD. Annu Rev Biochem. 2017 Jun 20;86:825-843. doi: 10.1146/annurev-biochem-061516-044839. Epub 2017 Apr 7. Annu Rev Biochem. 2017. PMID: 28399656 Grimm JB, Xie L, Casler JC, Patel R, Tkachuk AN, Falco N, Choi H, Lippincott-Schwartz J, Brown TA, Glick BS, Liu Z, Lavis LD. Grimm JB, et al. JACS Au. 2021 May 24;1(5):690-696. doi: 10.1021/jacsau.1c00006. Epub 2021 Apr 23. JACS Au. 2021. PMID: 34056637 Free PMC article. Cetin S, et al. ACS Med Chem Lett. 2021 Mar 16;12(5):752-757. doi: 10.1021/acsmedchemlett.1c00018. eCollection 2021 May 13. ACS Med Chem Lett. 2021. PMID: 34055222 Free PMC article. Turnbull JL, et al. J Am Chem Soc. 2021 Apr 28;143(16):6194-6201. doi: 10.1021/jacs.1c01139. Epub 2021 Apr 2. J Am Chem Soc. 2021. PMID: 33797899 Bucevičius J, et al. Chem Sci. 2020 Jun 22;11(28):7313-7323. doi: 10.1039/d0sc02154g. eCollection 2020 Jul 28. Chem Sci. 2020. PMID: 33777348 Free PMC article. Haugland R. P., Spence M. T. Z., Johnson I. D., and Basey A. (2005) The Handbook: A Guide to Fluorescent Probes and Labeling Technologies, 10th ed., Molecular Probes, Eugene, OR. Lavis L. D.; Raines R. T. (2008) Bright ideas for chemical biology. ACS Chem. Biol. 3, 142–155. Chan J.; Dodani S. C.; Chang C. J. (2012) Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat. Chem. 4, 973–984. Grimm J. B.; Heckman L. M.; Lavis L. D. (2013) The chemistry of small-molecule fluorogenic probes. Prog. Mol. Biol. Transl. Sci. 113, 1–34. Gee K. R.; Sun W.-C.; Bhalgat M. K.; Upson R. H.; Klaubert D. H.; Latham K. A.; Haugland R. P. (1999) Fluorogenic substrates based on fluorinated umbelliferones for continuous assays of phosphatases and β-galactosidases. Anal. Biochem. 273, 41–48.

本文链接: http://ge.immuno-online.com/view-17844.html

发布于 : 2024-12-22 阅读()